Low Carb High Intensity Interval Training Performance

Here’s a new study that looked at the Low Carb diet and High Intensity Interval Training performance (Lukas Cipryan, Daniel J. Plews, Alessandro Ferretti, Phil B. Maffetone, and Paul B. Laursen. Effects of a 4-Week Very Low-Carbohydrate Diet on High-Intensity Interval Training Responses. J Sports Sci Med. 2018 Jun; 17(2): 259–268.).

The purpose of the study was to examine the effects of altering from habitual mixed Western-based (HD) to a very low-carbohydrate high-fat (VLCHF) diet over a 4-week timecourse on performance and physiological responses during high-intensity interval training (HIIT).

Eighteen moderately trained males (age 23.8 ± 2.1 years) consuming their HD (48 ± 13% carbohydrate, 17 ± 3% protein, 35 ± 9% fat) were assigned to 2 groups. One group was asked to remain on their HD, while the other was asked to switch to a non-standardized VLCHF diet (8 ± 3% carbohydrate, 29 ± 15% protein, 63 ± 13% fat) for 4 weeks.

Participants performed graded exercise tests (GXT) before and after the experiment, and an HIIT session (5x3min, work/rest 2:1, passive recovery, total time 34min) before, and after 2 and 4 weeks. Heart rate (HR), oxygen uptake (V̇O2), respiratory exchange ratio (RER), maximal fat oxidation rates (Fatmax) and blood lactate were measured. Total time to exhaustion (TTE) and maximal V̇O2 (V̇O2max) in the GXT increased in both groups, but between-group changes were trivial (ES ± 90% CI: -0.1 ± 0.3) and small (0.57 ± 0.5), respectively.

Between-group difference in Fatmax change (VLCHF: 0.8 ± 0.3 to 1.1 ± 0.2 g/min; HD: 0.7 ± 0.2 to 0.8 ± 0.2 g/min) was large (1.2±0.9), revealing greater increases in the VLCHF versus HD group. Between-group comparisons of mean changes in V̇O2 and HR during the HIIT sessions were trivial to small, whereas mean RER decreased more in the VLCHF group (-1.5 ± 0.1). Lactate changes between groups were unclear.

Adoption of a VLCHF diet over 4 weeks increased Fatmax and did not adversely affect TTE during the GXT or cardiorespiratory responses to HIIT compared with the HD.

I have a lot of respect for Phil Maffetone and Paul Larson. Both are long time advocates of Low Carb Athletics. Phil Maffetone coached Mark Allen to multiple wins at Kona Ironman (Mark Allen Interview: A look back at working with Phil Maffetone and what it means for today’s triathlete).

 

 

Getting Van Wilder to Boston

The Big Question Remains

How to best fuel Van Wilder’s (Another VO2max Test – Van Wilder) next marathon? It is six weeks away and he’s not far from qualifying for the Boston Marathon. Is it best to shift to a high carb low fat diet for the marathon?

Pace vs Heart Rate Test

We did a test of pace vs heart rate.  The test was done on a track in 800 meter distance increments with speed matched to 10 bpm heart rate steps every 2 laps (of the 400 meter track). We downloaded the average data from the logging application.

We then overlaid the pace vs heart rate data with fat-carb oxidation rates from Van Wilder’s VO2max test. Here’s the resulting curves:

The top curve is running pace. Van Wilder’s fastest pace was almost a 4 minute mile. At that rate, he was have been oxidizing around 22 calories of carbs and 9 calories of fat per minute. The rate is also not sustainable due to the high exertion required.

Van Wilder has to run the marathon in about 3 hours. That’s 26.2 miles/3 hrs = 8.7 mph. That’s 60 min/hr divided by 8.7 miles/hr = 6.9 minutes per mile. That’s a heart rate of 155. That is also around 15 calories per minute from carbs and 12 calories per minute from fat. 15 kCal/min * 60 mins = 900 kCal/hr. If he can feed 360 kCal/hr from carbs that’s a net of 540 lost per hour. In three hours his muscle glycogen will be completely gone (assuming it can all be used).

Probably can’t get there from here – at least at the current performance.

Update 2018-09-14

Van Wilder suffered a hip injury and had to drop out of his qualifying marathon last week. That was the last chance for the season.

 

Athlete Van Wilder – Part 2

In an earlier post, I took a look at Van Wilder (Another VO2max Test – Van Wilder). He was a low carb guy but has bumped up the carbs. quite a bit. The day before the VO2max he ate quite a few carbs.

Let’s look close to see if our VO2max curves are comparable to the Volek FASTER chart. Here’s the FASTER chart:

The HCD (High Carbohydrate Diet) looks like an inverted parabola and can be modeled as a 2^X function. Due to the distorted hump, the LCD (Low Carbohydrate Diet) looks like a higher order polynomial (more than a square = 2nd order). Assuming a 3rd order polynomial would model the curve better. Revisiting the VO2max data for Van Wilder (as a third order polynomial):

Here is my VO2max data (also as a third order polynomial):

My curve looks more shifted to the right similar to the FASTER graph. Both of the graphs have the same 50%-50% calories point at about 80% of VO2max.

Van Wilder’s MFBGS (Maximum Fat Burning Glucose Sparing) point is at around 43% of his VO2max. My own MFBGS is quite a bit higher at around 61% of my VO2max. Does that provide any real advantage? Certainly my 20+ years older doesn’t help me out.

Van Wilder’s MAF Number

Van Wilder is a well trained athlete but he’s constantly injured. He should have a reduced MAF number but let’s assume he’s at the 180 – 35 = 145 heart rate.

Van Wilder’s MFBGS point is at around 118 bpm. At his MAF number he’s well into carbohydrate burning (around 65% fat and 35% carbs).

 

Another VO2max Test – Van Wilder

I’ve got another friend, call him Van Wilder, who got his VO2max tested. He’s a 35 year old triathlete who has done an Ironman and marathons. He has about five years of running training. He did the Ironman fat adapted with very few carbs during the event. He’s recently gotten off the Low Carb bandwagon, at least partly. He is still lower carb.

Van Wilder’s VO2max came in at a respectable 59.8. That puts him within 5% of the elite athletes like Zach Bitter and Ben Greenfield. Van Wilder’s max fat oxidation rate is very close to the top levels measured in FASTER  (Jeff S. Volek, Daniel J. Freidenreich, Catherine Saenz, Laura J. Kunces, Brent C. Creighton, Jenna M. Bartley, Patrick M. Davitt, Colleen X. Munoz, Jeffrey M. Anderson, Carl M. Maresh, Elaine C. Lee, Mark D. Schuenke, Giselle Aerni, William J. Kraemer, Stephen D. Phinney. Metabolic characteristics of keto-adapted ultra-endurance runners. Metabolism, Volume 65, Issue 3, March 2016, Pages 100-110.).

Here’s Van Wilder’s %VO2max vs Fat and Carbs Oxidation rates (in kcal/min).

At his peak he’s burning somewhere around 12 kCals a minute of fat. At the end Van Wilder is burning more than 22 kCals a minute of carbohydrates. His point where he’s burning 50% fat-50% carbs is at 80% of his VO2max. His peak fat oxidation is around 58% of VO2max. However, the point where he start burning carbs is relatively low at 45% of VO2max.

Compare his data with mine. I am fat adapted and only eat keto/low carb. I’m also 23 years older and not as trained by a long stretch.

Here’s the differences:

Parameter Van Wilder Doug LCS
Max Fat Oxid.
(kcal/min)
13 11
Max CHO Oxid.
(kcal/min)
22 22
%VO2max
Max Fat Oxid
58 53
%VO2max
Max CHO Oxid
100 100
%VO2max
50% Fat Oxid
50% CHO Oxid
80 78
%VO2max
Max Fat Oxid
Zero CHO Oxid
43 59

I would like to suggest that the main difference is found in the last row. My rate at which is expend no carbs and burn the most fat is at about 59% of my VO2max. Van Wilder’s point is about 43% of his VO2max.

Now my VO2max at 34.1 is significantly lower than Van Wilder’s at 59.8. And that probably explains a lot of the difference above. Van Wilder still looks to me like an efficient fat burner. Especially when compared to Damian Stoy.

Competition Fueling Strategies for Van Wilder?

What should the fueling strategy be for Van Wilder? Seems like he currently has the advantage of metabolic flexibility. He can certainly use fat for fuel at lower intensities.

 

VESPA and FASTER

Vespa has a graph on their site that shows %VO2max vs Fat oxidation in Low Carb and High Carb athletes from the FASTER study (Fat Adaptation: The Emerging Science from FASTER). Here’s the chart as it appears on the Vespa site:

I can’t find this graph in the FASTER Study paper  (Jeff S. Volek, Daniel J. Freidenreich, Catherine Saenz, Laura J. Kunces, Brent C. Creighton, Jenna M. Bartley, Patrick M. Davitt, Colleen X. Munoz, Jeffrey M. Anderson, Carl M. Maresh, Elaine C. Lee, Mark D. Schuenke, Giselle Aerni, William J. Kraemer, Stephen D. Phinney. Metabolic characteristics of keto-adapted ultra-endurance runners. Metabolism, Volume 65, Issue 3, March 2016, Pages 100-110.).

But I do have some of the VO2max data tests from two of the athletes; Ben Greenfield and Damian Stoy. And Ben was LCD and Damian was HCD. So we should be able to check the graph using their data.

Here is Ben’s curve:

Here is Damian’s curve:

Peak Values

Damian’s peak rate of fat oxidation at around 0.35 g/min was about one-third of Ben’s top rate of around 1.1 g/min. So in this regard the curves do match the relative magnitudes in the Vespa graph.

Shifted Values?

The VESPA graph for the LCD vs the HCD shows a shift to the right for the peak fat oxidation for LCD as compared with HCD. In fact, the VESPA graph shows the peak of the LCD at 70% of VO2max and shows the peak of the HCD at 50%.

This doesn’t match Ben’s data at all. Ben’s fat oxidation peak is clearly around 55% of VO2max.

There is a small shift to the left for vegan Damian Stoy. His peak is somewhere around 45%.

I want to see the other data to see if Ben is at one end of the LC data but he pretty clearly doesn’t match the %VO2max vs maximum fat oxidation rate that the VESPA graph implies.

Why Should I Care?

I care because my own data matches Ben Greenfield’s data.

FASTER Again – Checking a number on Ben Greenfield’s data

Ben Greenfield was a participant in the FASTER study (Jeff S. Volek, Daniel J. Freidenreich, Catherine Saenz, Laura J. Kunces, Brent C. Creighton, Jenna M. Bartley, Patrick M. Davitt, Colleen X. Munoz, Jeffrey M. Anderson, Carl M. Maresh, Elaine C. Lee, Mark D. Schuenke, Giselle Aerni, William J. Kraemer, Stephen D. Phinney. Metabolic characteristics of keto-adapted ultra-endurance runners. Metabolism, Volume 65, Issue 3, March 2016, Pages 100-110.).

Ben’s VO2max number was 61.1. The FASTER study was supposed to be performed at 64% of VO2max. For Ben that should have been 61.1 * 0.64 = 39.1. At that rate Ben would have been using 67% fat and 37% fat as his fuel for the three hour treadmill test.

But that’s not what Ben’s actual data shows.

Ben’s VO2 numbers were 35.8-37.0. Now that’s not that much different, but in this case it’s a significant difference. At 36.5 Ben is at a much different fuel mixture (80% fat and 20% carbs).

I am not suggesting there was any cheating here but the numbers really didn’t match the words of the study.

And repeated here:

And here:

There may be a clue here:

Was Ben adjusted downward? Even if he was the adjustment should have been done based on the VO2max testing. The number should have been 39.1 not 36. Here’s Ben’s VO2max testing result.

I am concerned about this difference. I’d like to know what’s up. There’s a huge difference between 2/3 Fat to 1/3 Carb and 4/5 Fat to 1/5 Carb. Especially over three hours. Especially when you end the race with low glycogen stores.

The details matter.

 

Slower But Fitter?

An interesting study put a group of endurance athletes on a Ketogenic diet and measured their performance as well as body composition changes (Zinn C, Wood M, Williden M, Chatterton S, Maunder E. Ketogenic diet benefits body composition and well-being but not performance in a pilot case study of New Zealand endurance athletes. J Int Soc Sports Nutr. 2017 Jul 12;14:22.). The study concluded:

All athletes increased their ability to utilise fat as a fuel source, including at higher exercise intensities.

Mean body weight was reduced by 4 kg ± SD 3.1 (p = 0.046; effect size (ES):0.62), and sum of 8 skinfolds by 25.9 mm ± SD 6.9; ES: 1.27; p = 0.001).

But how was their performance?

Mean time to exhaustion dropped by ~2 min (±SD 0.7; p = 0.004; ES: 0.53). Other performance outcomes showed mean reductions, with some increases or unchanged results in two individuals (VO2 Max: -1.69 ml.kg.min ± SD 3.4 (p = 0.63); peak power: -18 W ± SD 16.4 (p = 0.07), and VT2: -6 W ± SD 44.5 (p = 0.77).

Was this an adaptation problem?

Athletes reported experiencing reduced energy levels initially, followed by a return of high levels thereafter, especially during exercise, but an inability to easily undertake high intense bouts. Each athlete reported experiencing enhanced well-being, included improved recovery, improvements in skin conditions and reduced inflammation.

In the end the athletes likes the health benefits even with the performance losses.

MAF and Resistance Training

I’ve spent a little bit of time thinking about the compatibility of MAF Heart Rate Training and weightlifting – generically termed resistance training (RT). Since the activity is relatively short duration and the heart rate isn’t past the MAF Heart Rate it seems on the surface like it would be compatible to do both.

One thing to consider is that VO2max testing is done on a treadmill which increases the speed and angle every couple of minutes. Resistance training lasts for seconds. The Rate of Perceived Exertion (RPE) of the VO2max testing isn’t all that hard until it gets towards the end of the test. The RPE of weightlifting is substantial under significant loads so using RPE as a test this would indicate that there is an issue.

My measurement for whether an activity is aerobic or anaerobic is the Respiratory Exchange Ratio (RER). RER is correlated to heart rate in the VO2max test but rarely considered in RT. There is a study which looked at RER in RT (Scott. Quantifying the Immediate Recovery Energy Expenditure of Resistance Training. The Journal of Strength and Conditioning Research · April 2011) in terms of Excess Postexercise Oxygen Consumption (EPOC). To review:

The respiratory exchange ratio (RER) is calculated as steady-state CO2 produced divided by steady-state O2 consumed and is typically defined from values of 0.70 representing total fat oxidation to 1.00 representing total glucose oxidation.

Here’s the RER data from the study for RT. Note the RER values are all well over 1.0 which indicates anaerobic exercise range.

Another interesting comment helps explain the RER values above 1.0:

During and after exercise, RER values above 1.00 are generally thought to be the result of nonrespiratory CO2 production: The bicarbonate buffering system, for example, involves the removal of hydrogen ions with concomitant CO2 production and hyperventilation blows off ‘‘extra’’ CO2. Yet a true measure of the RER is best found only when the system is in a steady state of gas exchange.

To the subject at hand:

Rapid glycolysis (as part of anaerobic metabolism) ceases when muscle contraction stops so that recovery is considered to be aerobic in nature. If this is true, both fatty acid and lactate oxidation may play a significant role in fueling the immediate energy expenditure needs of recovery. Unfortunately, substrate oxidation immediately postexercise and particularly after anaerobic-type exercise has not been studied well enough to draw specific conclusions. Because of this, it must be assumed here that when muscle contraction immediately stops, glycolysis is limited to the point where fat and lactate are the predominantly oxidized fuels.

 

Exercise Intensity and Fat Burning

There is a common misconception that more exercise intensity burns more fat. It is true that more exercise intensity burns more calories but at some intensity level exercise burns more carbohydrates than fat. At even higher intensities there is no fat burned at all. Back to my chart of %VO2max (on the horizontal axis) vs calories of fat (blue) or carbs (brown).

The maximum amount of fat burning is at about 52% of VO2max. At around 78% of VO2max equal calories of fat and carbs are burned. After that point fat drops off quickly and carbs take over. At around 98% of VO2max all the energy comes from carbs. At this point the energy from carbs is over 20 kcals per minute which is nearly 2x the max energy that came from fat.

This is the reason that I have a hard time performing at high intensities. I just don’t have the carb stores to sustain longer high intensity efforts. This is why I changed my training to work more at the lower intensities where I can exclusively use fat as fuel.

It should be possible to push the blue curve over to the right farther through training. Zach Bitter’s numbers (Zach Bitter – Another FASTER participant) show that he uses fat for 98% of his energy at 75% of his VO2max. At that point I am nearly 50-50. I don’t think that this is just dietary fat adaptation but exercise adaptation. Zach can mobilize more fat energy than I can and training explains the difference.

 

Zach Bitter – Another FASTER participant

Zach Bitter was in the FASTER study (Jeff S. Volek, Daniel J. Freidenreich, Catherine Saenz, Laura J. Kunces, Brent C. Creighton, Jenna M. Bartley, Patrick M. Davitt, Colleen X. Munoz, Jeffrey M. Anderson, Carl M. Maresh, Elaine C. Lee, Mark D. Schuenke, Giselle Aerni, William J. Kraemer, Stephen D. Phinney. Metabolic characteristics of keto-adapted ultra-endurance runners. Metabolism, Volume 65, Issue 3, March 2016, Pages 100-110.).

Zach wrote about his experience in the FASTER study (Takeaways from the FASTER Study) where he gave some additional information about the FASTER tests. At least in Zach’s case (and probably in FASTER10 as well as FASTER43) the termination condition was inability to continue.

During the test, the researchers gradually increased both the speed and incline on the treadmill until I could no longer continue, and my rates of fat and carbohydrate metabolism at various intensities were measured.

Zach continued:

I can pinpoint where my fat metabolism and carbohydrate metabolism peak at varying intensities, and I can see the ratio between the two at any given percentage of my VO2 Max.

Zach had a very nice maximum fat oxidation rate and a very high rate of fat usage at a much higher % of his VO2max.

My fat metabolism peaked at 1.57 grams/minute. At this point in the test, my VO2 uptake was at 49.4. By dividing this number by my eventual VO2 Max of 66.1, I can calculate at what intensity I burn the most fat: 74.4%. At that intensity, I was burning 98% fat 2% carbohydrate (1.57 fat grams/minute and .07 carb grams/minute).

% VO2 Max
Fat Usage
Carb Usage
75%
98%
2%
84%
76%
24%
96%
23%
77%

What  Zach is saying is that at 74.4% of his VO2max he is burning nearly 98% fat (his chart shows that point as 75%). We don’t have the rest of the data to see where he was in lower intensities. That may well be a product of his level of training? Clearly he was very fat adapted as well.

Zach’s 50-50% cross-over point (where he burned 50% carbs/50% fat) is much higher than mine. My crossover point was at 75% of VO2max. By my calculations, Zach’s cross-over point was 89% of his VO2max.

My own max fat oxidation was at about 50% of my VO2max where at Zach’s was 50% higher.