Exercise and Longevity

There’s a couple of recent studies out that look at the effects of exercise using telomere length as a surrogate for longevity. Our telomeres shorten as we age.

The first study is (Beate Ø Osthus, Ida & Sgura, Antonella & Berardinelli, Francesco & Alsnes, Ingvild & Brønstad, Eivind & Rehn, Tommy & Kristian Støbakk, Per & Hatle, Håvard & Wisløff, Ulrik & Nauman, Javaid. (2012). Telomere Length and Long-Term Endurance Exercise: Does Exercise Training Affect Biological Age? A Pilot Study. PloS one. 7. e52769. 10.1371/journal.pone.0052769). The study:

Older endurance trained athletes had longer telomere length compared with older people with medium activity levels (T/S ratio 1.12±0.1 vs. 0.92±0.2, p = 0.04). Telomere length of young endurance trained athletes was not different than young non-athletes (1.47±0.2 vs. 1.33±0.1, p = 0.12).

A second study looked at the effects of the specific mode of exercise (Christian M Werner, Anne Hecksteden, Arne Morsch, Joachim Zundler, Melissa Wegmann, Jürgen Kratzsch, Joachim Thiery, Mathias Hohl, Jörg Thomas Bittenbring, Frank Neumann, Michael Böhm, Tim Meyer, Ulrich Laufs; Differential effects of endurance, interval, and resistance training on telomerase activity and telomere length in a randomized, controlled study , European Heart Journal, ehy585).

The results were interesting.

This randomized, controlled, and prospective training study shows that specific training protocols lead to differential effects on cellular aging. Aerobic endurance and high-intensive interval training, but not resistance training, increases telomerase activity and telomere length in blood mononuclear cells.

This study was fairly impressively powered with 124 subjects.

One hundred and twenty-four healthy previously inactive individuals completed the 6 months study. Participants were randomized to three different interventions or the control condition (no change in lifestyle): aerobic endurance training (AET, continuous running), high-intensive IT (4 × 4 method), or RT (circle training on 8 devices), each intervention consisting of three 45 min training sessions per week.

The specific results were statistically significant.

Telomerase activity in blood mononuclear cells was up-regulated by two- to three-fold in both endurance exercise groups (AET, IT), but not with RT. In parallel, lymphocyte, granulocyte, and leucocyte TL increased in the endurance-trained groups but not in the RT group. Magnet-activated cell sorting with telomerase repeat-ampliflication protocol (MACS-TRAP) assays revealed that a single bout of endurance training—but not RT—acutely increased telomerase activity in CD14+ and in CD34+ leucocytes.

Things to note is that this is an older (~49 years on average), untrained group of people who were at healthy BMI (~24).


The mechanism is interesting.

Is it the Low Carb or the High Fat?

Interesting study took a look at the question of whether it is high fat or low carb (Leckey JJ, Hoffman NJ, Parr EB, Devlin BL, Trewin AJ, Stepto NK, Morton JP, Burke LM, Hawley JA. High dietary fat intake increases fat oxidation and reduces skeletal muscle mitochondrial respiration in trained humans. FASEB J. 2018 Jun;32(6):2979-2991.) (Full PDF).

High dietary fat intake increases fat oxidation and reduces skeletal muscle mitochondrial respiration in trained humans.

It’s not a surprise that your body will burn more fat when you consume less carbohydrates. The Food Quotient (Food Quotient) predicts exactly that.

Mitochondria respiration (Mitochondrial Respiration) is:

…the set of metabolic reactions and processes requiring oxygen that takes place in mitochondria to convert the energy stored in macronutrients to  adenosine triphosphate(ATP), the universal energy donor in the cell.

I don’t know enough to know whether or not reduced mitochondrial respiration is good or bad for athletic performance. It seems like reduced rates of ATP would be bad for energy but is that energy made up in other ways? Is the loss offset by the increase in BHOB (ketone bodies)?


FATmax Training Results

In principle, training at FATmax (Maximal Fat Oxidation Rates in an Athletic Population) should result in significant loss of body fat and the resulting improvement in body composition. However, it is something of a surprise just how few studies have been performed to determine the effectiveness of this type of training. A meta-analysis (A. J. Romain, et.al. Physical Activity Targeted at Maximal Lipid Oxidation: A Meta-Analysis. (J Nutr Metab. 2012; 2012: 285395.) took a look and only found 15 total studies of this subject which fit their criteria. These studies were relatively small but the results were encouraging.

This meta-analysis confirms the conclusions of the individual studies, that are very low intensity training targeted at the level of maximal fat oxidation significantly decreases body weight, fat mass, waist circumference and total cholesterol. On the average, the effects of this variety of training are thus well confirmed, and their average magnitude is more precisely described.

Study Limitations

Only 5 studies include a control (nonexercising) group. There were also no longer term studies.

Volume of Training

Interestingly, some studies demonstrated an important average weight loss (8 kg over two months) with a protocol based on 90 min/day exercise at the level of maximal lipid oxidation. This could suggest that large weekly volumes of exercise training may be much more efficient than those used usually (i.e, 3 × 45 min/week).

Loss of Visceral Fat

The study called out a reference paper (Ohkawara K, et.al. A dose-response relation between aerobic exercise and visceral fat reduction: systematic review of clinical trials. Int J Obes (Lond). 2007 Dec;31(12):1786-97. ) which indicated that there is a dose response between aerobic exercise and loss of visceral fat.

… at least 10 METs x h/w in aerobic exercise, such as brisk walking, light jogging or stationary ergometer usage, is required for visceral fat reduction, and that there is a dose-response relationship between aerobic exercise and visceral fat reduction in obese subjects without metabolic-related disorders.


Low Carb High Intensity Interval Training Performance

Here’s a new study that looked at the Low Carb diet and High Intensity Interval Training performance (Lukas Cipryan, Daniel J. Plews, Alessandro Ferretti, Phil B. Maffetone, and Paul B. Laursen. Effects of a 4-Week Very Low-Carbohydrate Diet on High-Intensity Interval Training Responses. J Sports Sci Med. 2018 Jun; 17(2): 259–268.).

The purpose of the study was to examine the effects of altering from habitual mixed Western-based (HD) to a very low-carbohydrate high-fat (VLCHF) diet over a 4-week timecourse on performance and physiological responses during high-intensity interval training (HIIT).

Eighteen moderately trained males (age 23.8 ± 2.1 years) consuming their HD (48 ± 13% carbohydrate, 17 ± 3% protein, 35 ± 9% fat) were assigned to 2 groups. One group was asked to remain on their HD, while the other was asked to switch to a non-standardized VLCHF diet (8 ± 3% carbohydrate, 29 ± 15% protein, 63 ± 13% fat) for 4 weeks.

Participants performed graded exercise tests (GXT) before and after the experiment, and an HIIT session (5x3min, work/rest 2:1, passive recovery, total time 34min) before, and after 2 and 4 weeks. Heart rate (HR), oxygen uptake (V̇O2), respiratory exchange ratio (RER), maximal fat oxidation rates (Fatmax) and blood lactate were measured. Total time to exhaustion (TTE) and maximal V̇O2 (V̇O2max) in the GXT increased in both groups, but between-group changes were trivial (ES ± 90% CI: -0.1 ± 0.3) and small (0.57 ± 0.5), respectively.

Between-group difference in Fatmax change (VLCHF: 0.8 ± 0.3 to 1.1 ± 0.2 g/min; HD: 0.7 ± 0.2 to 0.8 ± 0.2 g/min) was large (1.2±0.9), revealing greater increases in the VLCHF versus HD group. Between-group comparisons of mean changes in V̇O2 and HR during the HIIT sessions were trivial to small, whereas mean RER decreased more in the VLCHF group (-1.5 ± 0.1). Lactate changes between groups were unclear.

Adoption of a VLCHF diet over 4 weeks increased Fatmax and did not adversely affect TTE during the GXT or cardiorespiratory responses to HIIT compared with the HD.

I have a lot of respect for Phil Maffetone and Paul Larson. Both are long time advocates of Low Carb Athletics. Phil Maffetone coached Mark Allen to multiple wins at Kona Ironman (Mark Allen Interview: A look back at working with Phil Maffetone and what it means for today’s triathlete).



Ketogenic Ironmen

Nice short study on Keto and Ironman ultra-endurance events (Maunder E, Kilding AE, Plews DJ. Substrate Metabolism During Ironman Triathlon: Different Horses on the Same Courses. Sports Med. 2018 May 18. doi: 10.1007/s40279-018-0938-9.).

Given the finite human capacity for endogenous carbohydrate storage, minimising the endogenous carbohydrate cost associated with performing exercise at competitive intensities should be a goal of Ironman preparation. A range of strategies exist that may help to achieve this goal, including, but not limited to, adoption of a low-carbohydrate diet, exogenous carbohydrate supplementation and periodised training with low carbohydrate availability.

Given the diverse metabolic stimuli evoked by Ironman triathlons at different performance levels, it is proposed that the performance level of the Ironman triathlete is considered when adopting metabolic strategies to minimise the endogenous carbohydrate cost associated with exercise at competitive intensities. Specifically, periodised training with low carbohydrate availability combined with exogenous carbohydrate supplementation during competition might be most appropriate for elite and top-amateur Ironman triathletes who elicit very high rates of energy expenditure.

Conversely, the adoption of a low-carbohydrate or ketogenic diet might be appropriate for some lower performance amateurs (> 12 h), in whom associated high rates of fat oxidation may be almost completely sufficient to match the energy demands required.

Nicely put.


BCAAs – Second Experiment

I did a second experiment with BCAAs today. The last one was at a Crossfit competition (CrossFit Competition – Festivus Games). There was so much going on that day that I didn’t get a chance to compare the BCAA effects. I was also using Ketone Supplements that day so I could not isolate any effects.

This morning, before my MAF walk, I decided to try the second serving of BCAAs. They were given to me by athlete Van Wilder. I took them with Creatine in water before leaving the house around 5:30 AM. The product is Optimum Nutrition Essential AmiN.O. Energy. Here’s a picture of the product.

Here is the nutrition label.

These have as much caffeine as a cup of coffee but they are taken in much more quickly than coffee. I definitely noticed a buzz from the caffeine. I also had some strange data from my heart rate monitors. I also had some soreness/pain in my left knee so I took it a bit easier as documented here(Measuring Heart Rate).

I can’t say whether there was an effect beyond the caffeine effect.

In the meanwhile I ordered another product as recommended by Ben Greenfield (Everything You Need To Know About How To Use Amino Acids For Muscle Gain, Appetite Control, Injury Repair, Ketosis And More.) Ben provides some compelling arguments for why BCAAs (Kion Aminos) may be a good choice for fasted workouts with ketogenic athletes.  There are quite a few studies referenced on Ben’s page.

The Other Side

On the other side, Menno Hensellmen has some arguments against BCAAs and refers to this study for his position (Robert R. Wolfe. Branched-chain amino acids and muscle protein synthesis in humans: myth or reality?
Journal of the International Society of Sports Nutrition 2017 14:30).

An extensive search of the literature has revealed no studies in human subjects in which the response of muscle protein synthesis to orally-ingested BCAAs alone was quantified, and only two studies in which the effect of intravenously infused BCAAs alone was assessed. Both of these intravenous infusion studies found that BCAAs decreased muscle protein synthesis as well as protein breakdown, meaning a decrease in muscle protein turnover. The catabolic state in which the rate of muscle protein breakdown exceeded the rate of muscle protein synthesis persisted during BCAA infusion. We conclude that the claim that consumption of dietary BCAAs stimulates muscle protein synthesis or produces an anabolic response in human subjects is unwarranted.

I will report on the BCAAs.


Train Low, Compete High

One popular Low Carb strategy is to train low and compete high. The basic strategy is to do all training in a fat adapted state and then switch to a higher carb state a day or two before competition.  A study took a look at this methodology (Havemann L, West SJ, Goedecke JH, Macdonald IA, St Clair Gibson A, Noakes TD, Lambert EV. Fat adaptation followed by carbohydrate loading compromises high-intensity sprint performance. J Appl Physiol 2006 Jan;100(1):194-202.). The study consisted of six days of High Fat diet to a High Carb diet on the 7th day. The study looked at the performance on the 8th day. The purpose of the carb fueling was to fill glycogen stores before the final tests.

The ingestion of a HFD for 6 days resulted in a shift in substrate metabolism toward a greater reliance on fat and a reduction in CHO oxidation. The increase in fat oxidation in the present study persisted despite 1 day of CHO loading on day 7 as demonstrated by the lower resting RER (0.77  0.02 vs. 0.88  0.05, Fig. 2) and higher circulating FFA (Table 7) during exercise after HFD-CHO compared with HCD-CHO on day 8.

Here’s what was valuable about this 2006 study.

The study is unique in that it is the first study to investigate the effect of high-fat feeding, followed by CHO loading, on endurance exercise, including high-intensity sprints that simulate actual race situations.

In spite of being on a High Carb diet the effects of the High Fat diet persisted. This could be seen in a lower RER value indicating increased fat oxidation. However, the sprint performance was not as good. From the discussion:

It was hypothesized that the potential glycogen-sparing effect of this dietary strategy (3) would be most beneficial for exercise that included high-intensity sprint bouts, where muscle glycogen is the predominant fuel. However, in contrast to our hypothesis, the HFD-CHO strategy actually compromised high-intensity 1-km sprint performance.


Yet Another Low Carb Performance Study

Here’s another study which looked a performance on a Low Carb diet (Sawyer, JC, Wood, RJ, Davidson, PW, Collins, SM, Matthews, TD, Gregory, SM, and Paolone, VJ. Effects of a short-term carbohydrate-restricted diet on strength and power performance. J Strength Cond Res 27(8): 2255–2262, 2013).

For this study 16 men and 15 women were tested after a week on their habitual diet (40.7% carbohydrate, 22.2% protein, and 34.4% fat) and then a week later on a Carbohydrate Restricted Diet (CRD – 5.4% carbohydrate, 35.1% protein, and 53.6% fat). The CRD consisted of ≤50 g of carbohydrates per day.

The study was intended to determine if strength is lost with the short diet timeframe. The results were:

Subjects consumed significantly fewer (p < 0.05) total kilocalories during the CRD (2,156.55 ± 126.7) compared with the habitual diet (2,537.43 ± 99.5).

That can be seen here:

That’s less than 400 calories a day or 2800 calories for the seven days. This may be due to the following:

During the CRD, the researcher contacted each subject every 48 hours to answer any questions about the diet. Body weight was measured every 48 hours during the CRD to determine if any body mass changes had occurred. If a reduction in body weight occurred during the CRD, subjects were instructed to consume more calories to maintain body weight.

Continuing with the results.

Body mass decreased significantly (p < 0.05).

Fortunately this study showed the Total body water. This indicates that most of the FFM loss was due to water loss and seemed to be the only significant effect.

Both males and females had improved body fat composition.

Despite a reduction in body mass, strength and power outputs were maintained for men and women during the CRD.

One big advantage of this study was the goal of keeping calories enough to not have losses. That’s relevant to people on keto consuming maintenance calories.

A major weakness was the short duration of the study. We can’t say that seven days isn’t enough time for adaptation in some studies and that it is enough time in other studies, can we?

Another weakness was the lack of a control group. It would have been helpful to have part of the group stay on the habitual diet during the second period.

A third weakness was the same before and after the keto adaptation phase:

Before each testing session, subjects were required to refrain from performing resistance exercise for 48 hours.

A forth weakness was that:

Participants arrived at the Human Performance Laboratory after a 12-hour fast between the hours of 6:00 and 8:00 AM.

They were then fed a fat/protein meal.

The pre-exercise meal was provided to each subject 2 hours before the start of each exercise testing session. The meal consisted of 400 kcal. The meal included 250 ml of water, 2 hard-boiled eggs, 28 g of cheddar cheese, and a protein shake (Advant Edge Whey Protein; EAS, Inc., Abbott Park, IL, USA).

It seems likely that this meal would be more useful to the athletes after keto adaptation than before. Again a control group would have teased out this difference.


Most of the tests were very short duration – One Rep Maximums and short erg bicycles. Only one was to exhaustion and there was a lot of rest between sets (3 minutes). The Keiser power output was lower with the keto diet but judged to not be significant. That is a surprise to me since the change was greater than the error bars.

I would expect the keto athletes to do reasonably well with the short duration of the tests. Without a control group it is difficult to determine if the group should have gotten stronger or not.


Effect of weight loss by ketogenic diet on body composition

An interesting study which is said to show good results for the keto diet and athletic performance (Hyun-seung Rhyu1 and Su-Youn Cho. The effect of weight loss by ketogenic diet on the body composition, performance-related physical fitness factors and cytokines of Taekwondo athletes . J Exerc Rehabil. 2014 Oct; 10(5): 326–331.).

The participants were randomly assigned to 2 groups, 10 participants to each group: the ketogenic diet (KD) group, and the non-ketogenic diet (NKD) group.

The diet/training period was only 3 weeks. The performances were compared:

Aerobic capacity was evaluated by measuring the time taken to finish a 2,000 m sprint. Whereas anaerobic capacity was evaluated by the Wingate test (), by measuring peak power, mean power and fatigue index using a Monark cycle ergometer (Monark 894-E, Sweden). Muscle strength was evaluated based on the measurement of: (1) grip force (TKK 5401, Takei, Japan) and back muscle strength (TKK 5402, Takei, Japan) using a digital measuring instrument, (2) muscle endurance by measuring the number of sit-ups performed in 60 sec, (3) instantaneous reactionary force by measuring time and distance on 100 m sprint and standing broad jump, respectively, and (4) balance by measuring duration on single leg standing with eyes closed.

The diet was only three weeks long. The body composition results were not great for Low Carb.

Changes in body composition

Variables KD (n= 10) NKD (n= 10) F-value

Pre Post Pre Post
Weight (kg) 64.11± 7.19 60.34± 6.59 63.69± 7.64 61.16 ± 7.84 G 0.004
T 89.927*
G×T 3.484
%Body fat (%) 12.59± 3.96 12.21± 3.59 11.31± 2.77 10.23 ± 2.63 G 1.283
T 4.486*
G×T 1.122
Lean body mass (kg) 54.65± 3.93 52.47± 4.67 54.94± 6.50 53.55 ± 8.16 G 0.067
T 10.457*
G×T 0.520
BMI (kg/m2) 21.44± 2.10 20.18± 1.79 21.08± 1.94 20.23 ± 1.97 G 0.032
T 86.936*
G×T 3.282

The KD kids lost twice as much weight which is good. The %Body fat wasn’t changed nearly as much in the KD group as in the NKD group. Worse than that, the KD group lost much more Lean Body Mass. BMI tracked the weight loss again demonstrating the weakness of the BMI measurement for tracking body composition. I think it may be the case that the LBM mass was mostly from lost water weight.

But how about performance?

  • KD did better on the 2,000 meter sprint after training than before. The NKD didn’t show much of an improvement. However, the timeframe listed in the results was 500 minutes. I don’t know how to make sense of that timeframe. It took the participants over 8 hours to sprint for a mile and a quarter?  Could the units be in seconds? If it was seconds then the time would be 8 minutes to run a little over a mile. That is possible in high school athletes.
  • What is striking is how much worse both of the groups did after training. Both groups lost peak power and mean power and the KD group lost significantly more power than the NKD group.
  • Another striking parameter was how much worse the NKD group got in anaerobic fatigue after the training. That is surprising.
  • The KD group did worse on grip strength gains.
  • The KD group did not improve as much on back muscle strength gains.
  • Both groups took longer on the 100m sprint.
  • Both groups could not jump as far in the broadjumps after training.
  • Equally disturbing was the lack of improvement in the sit-ups on the NKD group compared with the KD group.

All in all this points to a fatigued group for the final tests. It is possible to speculate that the KD group was less fatigued because the performed at a lower rate during the week or two of keto adaptation and stored up strength during that period. They show less signs of fatigue.

Issues with the study

  • One of the issues is that the performance tests were performed after fasting for 12-hours. That seems like a unlikely scenario which greatly benefits the Lower Carb cohort. In a more likely scenario both groups would have followed their diet.
  • There seems to have been no test such as RER or even measurements of urine ketones to verify ketosis in the Low Carb cohort.
  • The High School students were given lists of foods to eat. There were no food logs and no verification of compliance. There was no dietary analysis at all.
  • Muscle endurance was done by seeing how many situps could be done in 60 seconds.
  • There was no control group in diet.
  • The standard deviation bars on the data were much bigger than the change effects.

Taekwondo is characterized as:

a comprehensive physical exercise involving high intensity movement of the muscles and joints of the whole body at the mean 85–95% HR-max

Yet, I can’t find an explanation of the time duration of Taekwondo.


Another VO2max Test – Van Wilder

I’ve got another friend, call him Van Wilder, who got his VO2max tested. He’s a 35 year old triathlete who has done an Ironman and marathons. He has about five years of running training. He did the Ironman fat adapted with very few carbs during the event. He’s recently gotten off the Low Carb bandwagon, at least partly. He is still lower carb.

Van Wilder’s VO2max came in at a respectable 59.8. That puts him within 5% of the elite athletes like Zach Bitter and Ben Greenfield. Van Wilder’s max fat oxidation rate is very close to the top levels measured in FASTER  (Jeff S. Volek, Daniel J. Freidenreich, Catherine Saenz, Laura J. Kunces, Brent C. Creighton, Jenna M. Bartley, Patrick M. Davitt, Colleen X. Munoz, Jeffrey M. Anderson, Carl M. Maresh, Elaine C. Lee, Mark D. Schuenke, Giselle Aerni, William J. Kraemer, Stephen D. Phinney. Metabolic characteristics of keto-adapted ultra-endurance runners. Metabolism, Volume 65, Issue 3, March 2016, Pages 100-110.).

Here’s Van Wilder’s %VO2max vs Fat and Carbs Oxidation rates (in kcal/min).

At his peak he’s burning somewhere around 12 kCals a minute of fat. At the end Van Wilder is burning more than 22 kCals a minute of carbohydrates. His point where he’s burning 50% fat-50% carbs is at 80% of his VO2max. His peak fat oxidation is around 58% of VO2max. However, the point where he start burning carbs is relatively low at 45% of VO2max.

Compare his data with mine. I am fat adapted and only eat keto/low carb. I’m also 23 years older and not as trained by a long stretch.

Here’s the differences:

Parameter Van Wilder Doug LCS
Max Fat Oxid.
13 11
Max CHO Oxid.
22 22
Max Fat Oxid
58 53
Max CHO Oxid
100 100
50% Fat Oxid
50% CHO Oxid
80 78
Max Fat Oxid
Zero CHO Oxid
43 59

I would like to suggest that the main difference is found in the last row. My rate at which is expend no carbs and burn the most fat is at about 59% of my VO2max. Van Wilder’s point is about 43% of his VO2max.

Now my VO2max at 34.1 is significantly lower than Van Wilder’s at 59.8. And that probably explains a lot of the difference above. Van Wilder still looks to me like an efficient fat burner. Especially when compared to Damian Stoy.

Competition Fueling Strategies for Van Wilder?

What should the fueling strategy be for Van Wilder? Seems like he currently has the advantage of metabolic flexibility. He can certainly use fat for fuel at lower intensities.