Running Slow

I’ve taken my MAF training to a certain point where I am running a lot more than I was before but still not for very long. I’d like to be able to run the whole time – except perhaps on really steep hills like the Lincoln Brick hill.

I think the problem is that when I start running I am going too fast and my heart rate climbs too quickly. I need to work on running slower. I probably need to do this work on a track to avoid hills (I live in SW PA where it is very hilly nearly everywhere).

Here’s a video of the Niko Niko method which is very similar (Niko Niko uses a low intensity steady state training at a heart rate just below the bottom of the MAF range).

The key points in this video are:

  1. Be conscious about small steps and pitch. The woman in the video is taking steps where her shoes don’t go past the other shoe.
  2. Keep your back straight. Don’t lean forward into the run.
  3. Relax your shoulders. Your arms should move naturally.
  4. Breathe naturally.
  5. Slightly raise your chin and look far ahead of you.
  6. Be conscious about forefoot landing. Don’t land on your heels.
  7. Do not kick the ground.

There is a MAF video by Sherpa Herb along similar lines.

I am going to start working on this. I’ve been doing about three days a week with an hour or more each time so I feel like my consistency has held up.

Low Carb High Intensity Interval Training Performance

Here’s a new study that looked at the Low Carb diet and High Intensity Interval Training performance (Lukas Cipryan, Daniel J. Plews, Alessandro Ferretti, Phil B. Maffetone, and Paul B. Laursen. Effects of a 4-Week Very Low-Carbohydrate Diet on High-Intensity Interval Training Responses. J Sports Sci Med. 2018 Jun; 17(2): 259–268.).

The purpose of the study was to examine the effects of altering from habitual mixed Western-based (HD) to a very low-carbohydrate high-fat (VLCHF) diet over a 4-week timecourse on performance and physiological responses during high-intensity interval training (HIIT).

Eighteen moderately trained males (age 23.8 ± 2.1 years) consuming their HD (48 ± 13% carbohydrate, 17 ± 3% protein, 35 ± 9% fat) were assigned to 2 groups. One group was asked to remain on their HD, while the other was asked to switch to a non-standardized VLCHF diet (8 ± 3% carbohydrate, 29 ± 15% protein, 63 ± 13% fat) for 4 weeks.

Participants performed graded exercise tests (GXT) before and after the experiment, and an HIIT session (5x3min, work/rest 2:1, passive recovery, total time 34min) before, and after 2 and 4 weeks. Heart rate (HR), oxygen uptake (V̇O2), respiratory exchange ratio (RER), maximal fat oxidation rates (Fatmax) and blood lactate were measured. Total time to exhaustion (TTE) and maximal V̇O2 (V̇O2max) in the GXT increased in both groups, but between-group changes were trivial (ES ± 90% CI: -0.1 ± 0.3) and small (0.57 ± 0.5), respectively.

Between-group difference in Fatmax change (VLCHF: 0.8 ± 0.3 to 1.1 ± 0.2 g/min; HD: 0.7 ± 0.2 to 0.8 ± 0.2 g/min) was large (1.2±0.9), revealing greater increases in the VLCHF versus HD group. Between-group comparisons of mean changes in V̇O2 and HR during the HIIT sessions were trivial to small, whereas mean RER decreased more in the VLCHF group (-1.5 ± 0.1). Lactate changes between groups were unclear.

Adoption of a VLCHF diet over 4 weeks increased Fatmax and did not adversely affect TTE during the GXT or cardiorespiratory responses to HIIT compared with the HD.

I have a lot of respect for Phil Maffetone and Paul Larson. Both are long time advocates of Low Carb Athletics. Phil Maffetone coached Mark Allen to multiple wins at Kona Ironman (Mark Allen Interview: A look back at working with Phil Maffetone and what it means for today’s triathlete).

 

 

MAF at One Month-ish

I did a second MAF baseline yesterday. There was more running than the last MAF baseline. Here’s the first MAF baseline (Heart Rate Training (HRT) – Part 7). I re-crunched my data from the first MAF test. Here’s the heart rate from Strava (I only had the Samsung Watch at the time). I can see I was lower on the heart rate range than now.

Here’s the heart rate data from yesterday – the Polar Strap data.

I only had two points where I went over my MAF rate and that was for a very short time.

Here is the same data from my watch (for apples-apples comparison):

I don’t trust the glitches on both of the watch charts. Not sure what the glitch was, but other than that the data is pretty comparable on both.

Performance Increase?

The idea of MAF is that you will see a performance increase. Here’s the two MAF benchmark split times.

The two mile, three mile, and for mile splits were all about 30 seconds faster so I am making good progress in improving my aerobic fitness.

 

Nerding Out on Data

I like Strava for tracking my MAF runs but it doesn’t work well for me with my Polar Chest Heart Rate Strap (HR-7). So, I’ve switched to Polar Beat/Flow for the HR-7 strap since it’s easier to read the heart rate while running. I still use Strava along with Samsung Health. The watch sends data to Samsung Health and Samsung Health sends data to Strava. I still don’t like the result since the heart rate data gets blocky. Here’s an example:

So how did I get the data?

This is the fore-warned nerdy part. I’ve written a Python script. If you don’t know Python skip the rest of this post since I can’t support the code. If you care, the Python code is here on GitHub. Again, I can’t support the code. It uses libraries that are here.

After running the pyStravaParse code. I then open the CSV file (spreadsheet format) in LibreOffice (a Microsloth EXCEL clone). I can’t support your spreadsheet choice either.

The data looks like:

Time (secs) Lat Lon Elev Heart_Rate (bpm) HRmax (bpm) HRmin (bpm)
0 39.908913 -79.71205 323.7 93 122 112
2 39.908913 -79.71205 323.7 93 122 112

HRmax and HRmin are hard coded as string constants at the start of the code. They are based on your MAF number. They could be replaced by 180-age and 190-age.Data_Time is offset in seconds.

I then select the Time, Heart_Rate, HRmax and HRmin columns like this:

Select Insert, Chart.

Choose Chart Type – XY (Scatter) then Next.

For Data Range you should already be OK if you selected data above. The select Next.

For Data Series you should already be OK. Then select Next.

For Chart Elements enter your title, etc as below. After entering in the titles, select Finish.

You should get a result like this.

To edit the chart double click in the chart. Then right click on one of the numbers on the heart rate axis. You should then see.

Select Format Axis. Then enter your own heart rate range numbers. I selected Minimum of 80 and left the maximum at 140.

You should get something like this.

I also like to move the legend to the bottom and move the graph up a bit.

Not a bad result but it’s easy to see the blockyness of the data. The Polar strap does better. I don’t have data for that same run since I bought the Polar strap later but here’s a recent image.

Not bad!